

timeXL

The Bitangential scleral lens made of Z material

Introduction

Menicon brings to you Time XL, the first scleral lens with a **bitangential** periphery. Time XL is designed to fit the anatomy of human eyes. Typically the shape of the limbus and the sclera is linear and not curved¹; in 95% of cases the surface of sclera is toric and not spherical. The bitangential design of TimeXL optimizes the pressure distribution of the lens on the conjunctiva, therefore the patient's tolerance is higher and the daily wearing time is longer.^{2,3}

Design

Two important innovations are combined for maximum comfort and optimum performance of TimeXL. The periphery is produced linearly and torically (bitangential). The toric periphery of the lens can be precisely controlled in both flat and steep meridians and the sclera is outlined for a simple fit and stability. This allows the cornea to be optimally bridged.³ The toricity is limited to just the periphery of the lens: the back surface geometry of the optical zone is spherical. If necessary, the front of the TimeXL's optical zone can be fitted with a corrective cylinder.

 Van der Worp E, Graf T, Caroline PJ. Exploring beyond the corneal borders. Contact Lens Spectrum 2010; 25 (6):26–32.
Van der Worp E. A Guide to Scleral Lens Fitting (monography online). Pacific University Common Knowledge: Books and Monographs. 2010. Available at: http://commons.pacificu.edu/cgi/viewcontent.cgi?article=1003&context=mono. Consulted on 13 June 2013.
Visser, Medical Applications and Outcomes of Bi-tangential Scleral Lenses. Optometry and Vision Science VOL. 90. No.10, October 2013.

Fitting philosophy

Objective

The TimeXL is designed to fully bridge the cornea and the limbus and to rest on the sclera. An optimal fitting is achieved when following characters are observed after 30 minutes of wearing:

- Pressure is distributed equally, no visible blanching
- Central corneal clearance of approximately 200 μm
- Limbal clearance of approximately 100 $\mu m,$ with a minimum of 50 μm

Setup of diagnostic set

TimeXL diagnostic set has 16 diagnostic lenses of BC 8.40 mm, diameter 16.00 mm and power of 0. All lenses feature a toric periphery and the toricity is expressed in tangent angles. The toricity difference between flat meridian and steep meridian is of 6° for all diagnostic lenses. 4 different sagittal heights (in μ m) are available: 3400, 3600, 3800 and 4000.

Example : 3600 36-42

3600 = sagittal height 36° = tangent of flat meridian 42° = tangent of steep meridian

Choose a diagnostic lens

1. With easyfit

Import the topography into easyfit. The program estimates sagittal height and tangent and recommends the diagnostic lens accordingly.

2. Empirically, without easyfit

The most common sagittal height is **3600** μ m. Like other scleral lenses, sagittal height varies from eye to eye. A patient with keratoconous may have a deeper corneal profile and require a more significant increase in sagittal height when compared to a normal eye. For patients who have undergone a corneal transplant or refraction operation, a lower height may be required. The corneal scleral profile can be assessed eye by eye. If uncertain or inexperienced, start with a lens of sagittal height 3600 and tangents 36/42 for keratoconus and transplant, and a sagittal height 3400 tangents 36/42 for regular cornea.

Cornea profil	Sagittal height	% of lens used
Shallow	3000 - 3300 μm	10%
Normal	3400 - 3800 μm	75%
Deep	3900 - 4100 µm	10%
Very deep	4200 - 4400 µm	5%

Scleral profil	Flat meridian	% of lens used
Flat	28-32	8%
Normal	34-38	80%
Steep	40-50	12%

Assess the fitting

Diameter

The diameter of diagnostic lens is 16.0 mm, it suits most patients of average to small cornea. The lens must cover about 1.5 to 2.5 mm larger than limbus, or 3.0 to 5.0 mm larger than horizontal visible iris diameter (HVID). The lens is available of diameter from 14.0 to 17.5 mm in 0.5 mm steps. If a patient needs a diameter other than 16.0 mm, enter the diameter needed at the moment of ordering. Take into account that the diameter is no longer 16.0 mm in further assessment for this patient.

Tangents

First, assess the lens in primary gaze. Keep the eyelids at a distance to assess the periphery. Then ask the patient to look in all directions to assess the lens movement and potential bonding. Extreme viewing direction may lead to incorrect result. Check the tangent against the outline with the sclera by looking for blanching or edge lift. Reduce the tangent angle (flatter) to the corresponding meridian in case of blanching. Increase the tangent angle (steeper) to the corresponding meridian in the event of too much edge lift.

Fitting and tangents

Tight tangent (too steep) Loose tangent (too flat) \rightarrow

reduce the angle (flatten) increase the angle (steepen)

Lens edge is too steep. Blanching of the capillaries. Decrease the tangent by 2°.

Lens too tight. Blanching (the capillaries close). Decrease the tangent by 4°.

Extreme edge tightness around the entire lens. Decrease the tangent by 6°.

In case of tangent too flat \longrightarrow increase angle (steepen)

Excessive edge lift on the flat meridian. Increase the tangent by 2° on the flat meridian.

Excessive edge lift on both meridians. Increase the tangent in both meridians.

Observation		Solution
Blanching : The lens is too steep on both meridians (too tight).	Too steep	Decrease the tangent on the flat meridian by 4° and decrease the tangent on the steep meridian by 4°. Example : On the flat meridian: from 36° to 32°. On the steep meridian: from 42° to 38°.
Edge lift : The lens is too flat on both meridians(too loose).	Too flat	Increase the tangents by 4° on both meridians. Example : On the flat meridian: from 38° to 42°. On the steep meridian: from 44° to 48°.
Edge lift: The lens is too flat (too loose) on the steep meridian and OK on the flat meridian.	Too flat Fat meridian Ugg u Gag of flat	Increase the tangent by 4° (steepen) ONLY on steep meridian. Do not change tangent on flat meridian. Example : On the flat meridian: tangent remains 36°. On the steep meridian: from 42° to 46°.
Blanching : The lens is too steep (too tight) on the flat meridian and OK on the steep meridian.	Too steep	Increase the tangent by 4° (steepen) ONLY on steep meridian. Do not change tangent on flat meridian. Example : On the flat meridian: from 38° to 34°. On the steep meridian: tangent remains 44°.

Assessing limbal clearance

Use fluorescein and a yellow filter, as shown in the photos below. White light or an OCT can also be used. It is important that the lens does not make contact with the limbus. The ideal limbal clearance is around 100 μ m, small variation is acceptable. When the tangent and the sagittal height are correct, the limbal clearance can be modified by changing the base curve or diameter. In case of pressure or clearance < 50 μ m, re-assess the landing zone. A smaller limbal clearance will be observed if the tangent is flat. Increasing tangent should lead to ideal limbal clearance.

Check the landing zone before you change the base curve. Increase the tangent by 2° in the edge bends upward.

Pressure on the limbal area. Flatten BC or increase Ø.

Too much fluo on limbus. Steepen BC or decrease Ø.

Ideal limbal clearance. Do not change BC or Ø.

🔆 TIPS

If BC is changed, the power should be changed too.

Assessing central clearance

Assess the clearance at the highest point of the cornea using an optical section with fluorescein and white light or an OCT of the anterior segment.

The ideal central clearance is approximately 200 μ m. The thickness of diagnostic lens is 350 μ m. The central clearance can be changed by increasing or decreasing the sagittal height of the lens. Increase the sagittal height in case of too little central clearance.

🔆 TIPS

The central clearance can be estimated by comparing the thickness of the lens (350 µm at 0 dpt) with the tear reservoir below the lens: move a small amount of light using a slit lamp from limbus to limbus at an angle of 45°. If the clearance is too high, it is more difficult to insert the lenses without air bubbles. If a patient tends to dirty the lenses, a lower sagittal height must be selected. Greater sagittal height may be necessary for eyes that are sensitive to progressive ectasia.

Too little clearance

Increase sagittal height

Too much clearance

Decrease sagittal height

Ideal clearance

Do not change height

🔆 TIPS

When one or both of the tangent angles are changed, there will be an effect on the distribution of pressure under the lens. It will also have consequences for the central clearance.

Determining lens power

Conduct an over refraction test after the eye has adjusted to the optimum diagnostic lens. The power of the diagnostic lens is 0 dpt. The TimeXL is a non-rotational symmetrical lens that aligns with the flat meridian on the marks for cylinder availability on any given axis.

All diagnostic lenses and toric lenses have marks. They align the flat meridian.

Determine the position of the marks who should be aligned with the flat meridian. If the lens has the correct shape, the marks will be stable and maintain their position. Make sure to note where the marks of diagnostic lens are and order a lens accordingly with the cylinder axis to compensate the rotation. Use the over refraction feature of **ecsyfif**.

Without easyfit: Determine cylinder axis according to over refraction and mark position (with respect to the meridian axis 0°-180°).

🄆 TIPS

Easyfit can also determine the lens by using axis of marks and axis of over refraction.

Problem shooting

Observation	Solution
Steep fit: blanching, compression on either flat or steep meridian	$\frac{\text{Mild}}{\text{Moderate}}$: decrease the tangent on the concerned meridian by 2° (60 µm) <u>Moderate</u> : decrease the tangent by 4° (120 µm) <u>Note</u> : by changing a tangent, the tangent on the opposite side of the lens is also changed in the trial lens.
Flat fit: too much edge lift (too much slceral standoff), or too mobile	$\frac{\text{Mild}}{\text{Moderate}} \text{ increase the tangent on the concerned meridian by 2° (60 µm)} \\ \frac{\text{Moderate}}{\text{Moderate}} \text{ increase the tangent on the concerned meridian by 4° (120 µm)} \\ \frac{\text{Note}}{\text{Note}} \text{ is by changing a tangent, the tangent on the opposite side of the} \\ \text{lens is also changed in the trial lens.} \\ \end{array}$
Too much mobility	Increase the diameter if tangents are correct.
Too much central clearance	Decrease the sagittal height to reach 200-250 μm after at least 30 min of wearing.
Too little central clearance	Increase the sagittal height to reach 200-250 μm after at least 30 min of wearing.
Too little or too much limbal clearance	Make sure that tangents are correct. Too low limbal clearance : increase BC; too high limbal clearance : decrease BC.
Cylinder over refraction	Determine the position of marks, order a front toric lens.
Visual fluctuations	Check the quality of the surface (for wettability and deposits). Decrease the sagittal height, increase the diameter, check the lens stability.
Lens surface deposits	Use suitable cleaning solutions (MENICARE PURE & PROGENT). Check and treat ocular causes (GPC, MGD). Replace the material if the cleaning system is not effective.
Blurry vision	Conduct an over refraction test to identify any remaining astigmatism. Order a front toric lens. Record the lens stability in degrees during follow-up visits in order to keep track of the lens stability over time.
Deposits in tear	Remove the lens, clean and rinse it if vision is blurry. Improve the tangent in order to prevent deposit under the lens. Check and treat ocular causes (GPC, MGD). Choose proper solution. Rinse the eye with saline or another solution before inserting lenses. Decrease the sagittal height.
Inferior decentering	Light decentering is acceptable. First, check the vertical scleral fit and the tangent. Next, increase the diameter.
Air bubbles under the lens	Insert again the lens to remove "insertion bubbles". Constant central air bubbles may signify excessive sagittal lens height that should be decreased. Constant air bubbles in the limbal zone may signify a BC that's too flat and should be steepened. The appearance of air bubbles after proper placement may signify a tangent that is too flat and should be increased.
Discomfort due to the lens	The first lens should be felt, but should not feel uncomfortable. Check edge lift. Increase the tangent on the meridian concerned. Check central clearance, and increase it if it's insuffisant.

Instruction for use of diagnostic set

General information

- Always wash hands before handling diagnostic set
- Always use a lint-free cloth when cleaning the lenses.

Before insertion

- Make sure the lens is not damaged.
- Check the code engraved on the lens correspond with the label.
- Clean the lens with Spray & Clean then with MENICARE PURE
- Rinse the lens with preservative-free saline solution.
- Fill the lens fully with preservative-free saline solution and place the lens onto the eye.

After removal

- Clean the lens with MeniLab during 5 minutes.
- Then rinse the lens with perservative-free saline solution
- Dry the lens and put it back in the lens case if it needs dry conservation .
- Or conserve the lens in MENICARE PURE

Example : 3600 32-38

3600 : sagittal height 32° : tangent of flat meridian 38° : tangent of steep meridian

3400 3400 3400 3400 3400 32-38 34-40 36-42 38-44 40-46 3600 3600 3600 3600 3600 32-38 34-40 36-42 38-44 40-46 3800 3800 3800 34-40 36-42 38-44 4000 4000 4000 38-44 34-40 36-42

BC	8.4 mm
Diameter	16.0 mm
Power	Plano
Material	Dk 125 (blue)
Marking	Marks on the flat meridian
Length of markers	1.0 mm and 1.5 mm near edge
Graving	Code / Material / N° of order

Set up of diagnostic set

Parameters

Sagittal height	3000 μm to 4600 μm per 100μm
Tangents of flat meridian to steep meridian	Both meridians are available from 28° to 50° per 2°
Base curve	7.40 mm tp 9.20 mm in per 0.20 mm
Diameter	14.00 mm to 17.50 mm per 0.50 mm
Power	-25.00 to +25.00 D per 0.25 D
Material*	Menicon Z - Dk 163 x 10 ⁻¹¹ (ISO)
Handling tint	Clear
Wearing type	Daily wear
Replacement recommended	Yearly

*Available in Dk 125

Parameters of TimeXL BT (front toric lenses) :		
Axes	Cylinder	
From 0° to 180° per 1°	-0.75 D to -3.00 D per 0.25 D	

Technical Assistance +33 (0) 1 85 73 13 12 atechnique@menicon.fr

Campus Menicon

campus@menicon.fr www.campusmenicon.fr Customer Service +33 (0)1 85 73 13 11 serviceclients@menicon.fr

TimeXL and TimeXL BT contact lenses are class IIa medical device certified by **CE**0344. Read instructions for use.

www.menicon.com